Wastewater Treatment Formula Sheet

1. Circumference, Area, Volume

a. Circumference	C = 3.1416 x Diameter
b. Perimeter	P=[2xLength]+[2xWidth]
c. Area	
Rectangle	Area = Length x Width
Circle	Area = 0.785 x Diameter x Diameter
Triangle	$Area = \frac{1}{2} x Base x Height$
d. Volume	
Rectangle	Volume = Length x Width x Depth
Cylinder	Volume = 0.785 x Diameter x Diameter x Depth
Cone	Volume = 0.262 x Diameter x Diameter x Height
Sphere	Volume = $0.524 \times Diameter \times Diameter \times Diameter$

2. Conversion Factors

a. ft³ to Gallons	Volume, Gallons = Volume, ft^3 x 7.48 Gallons / ft^3
b. Gallons to Pounds	Pounds = Gallons x 8.34 lbs/Gallon
c. mg/L to Pounds	Pounds = Concentration, mg/L x Tank Volume, MG x 8.34 lbs / MG / mg/L
d. mg/L to Pounds/Day	Pounds/Day = Concentration, mg/L x Flow, MGD x 8.34 lbs / MG / mg/L
e. mg/L to Kilograms/Day	Kilograms/Day = Conc. , mg/L x Flow, MGD x 3.785 lbs / MG / mg/L
f. mg/KG to Pounds/Ton	Pounds/Ton = Concentration, mg/KG x 0.002 lbs / ton / mg/KG
g. Pounds to mg/L	Concentration = Quantity, lbs (Tank Volume, MG x 8.34 lbs / mg/L / MG)
h. Pounds/day to mg/L	Concentration = $\frac{Quantity, lbs}{(Flow, MGD \times 8.34 lbs / mg/L / MG)}$
i. Pounds/day to MGD	Flow, MGD = Quantity, lbs / day (Concentration, mg/L x 8.34 lbs / mg/L / MG)

3. Flow

c. MGD to CFS	Flow, cfs = Flow, MGD x 1.55 cfs / MGD
b. MGD to GPM	Flow, GPM = $\frac{Flow, MGD \times 1,000,000 \text{ gallons / MG}}{1,440 \text{ minute / Day}}$
a. MGD to GPD	Flow, GPD = Flow, MGD x 1,000,000 gallons / MG

4. Chemical Weight

Using Specific Gravity	Weight, lbs / Gallon = Specific Gravity x 8.34 lbs / Gallon

5. Population Equivalent

$$P.E., People = \frac{BOD_5, mg/L \times Flow, MGD \times 8.34 \, lbs / mg/L / MG}{0.17 \, lbs \, BOD_5 / Person / Day}$$

6. Percent to Decimal Percent

	Percent (Decimal)= $\frac{Percent}{100}$
--	--

7. Percent Removal

a. Based on Concentration	% $Removal = \frac{[Influent Concentration - Effluent Concentration] \times 100}{Influent Concentration}$
b. Based on Quantity (lbs, lbs/day, KG or KG/day)	% Removal = [Influent Quantity - Effluent Quantity] x 100 Influent Quantity

8. Hydraulic Detention Time

a. HDT, Minutes	HDT, Minutes = $\frac{Tank\ Volume, ft^3\ x\ 7.48\ gal\ /\ ft^3\ x\ 1,440\ Minutes\ /\ Day}{Flow, Gallons\ /\ Day}$
b. HDT, Hours	HDT, Hours = $\frac{Tank\ Volume, ft^3\ x\ 7.48\ gal\ /\ ft^3\ x\ 24\ Hours\ /\ Day}{Flow, Gallons\ /\ Day}$
c. HDT, Days	HDT , $Days = \frac{Tank\ Volume$, $ft^3\ x\ 7.48\ gal\ /\ ft^3}{Flow$, $Gallons\ /\ Day$

9. Flow Measurement

a. Flow, (Fill and Draw), GPM	Flow Rate, GPM = $\frac{\text{Volume Added or Removed, Gallons}}{\text{Time, Minutes}}$
b. Flow (Velocity), cfs	Flow (Q), cfs = Channel Width, ft x Water Depth, ft x Velocity, fps

10. Grit Removal

a. Velocity (float method)	$Velocity, fps = \frac{Distance Traveled, ft}{Time Required, Seconds}$
b. Velocity	$Velocity, fps = \frac{Flow, MGD \times 1.55 cfs / MGD}{Channels in Service \times Channel Width, ft \times Water Depth, ft}$
c. Settling Time*	Settling Time, Seconds = $\frac{\textit{Water Depth, Feet}}{\textit{Settling Velocity, fps}}$
d. Required Channel Length*	Channel Length, $ft = \frac{Water\ Depth,\ Ft\ x\ Water\ Velocity,\ fps}{Settling\ Velocity,\ fps}$
* The settling velocity must be given or determined experimentally.	

11. Settling

a. Weir Overflow Rate	Weir Overflow Rate, GPD / $ft = \frac{Flow, Gallon / Day}{Weir Length, ft}$
b. Surface Loading Rate	Surface Loading Rate, GPD / $ft^2 = \frac{Flow, Gallons / Day}{Settling Tank Area, ft^2}$
c. Solids Loading Rate	SLR, lbs / day / $ft^2 = \frac{Influent TSS, mg/L \times Flow, MGD \times 8.34 lbs / mg/L /MG}{Settling Tank Area, ft^2$

12. Ponds

12. Folius	
a. Area in Acres	$Area, acres = \frac{Area, ft^2}{43,560 \text{ ft}^2 / acre}$
b. Volume in Acre-Feet	Pond Volume, Acre Feet = $\frac{\text{Length, ft } \times \text{Width, ft } \times \text{Depth, ft}}{43,560 \text{ ft}^3 / \text{Acre Foot}}$
c. Flow in Acre-Feet/Day	Flow, Acre Ffeet / Day = Flow, MGD x 3.069 Acre Feet / MG
d. Flow, Acre-Inches/Day	Flow, Acre Inches / Day = Flow, MGD x 36.8 Acre Inches / MG
e. Hydraulic Detention Time, Days	Hydraulic Detention Time, Days = Pond Volume, Acre Feet Influent Flow, Acre Feet / Day
f. Hydraulic Loading	Hydraulic Loading, Inches / Day = $\frac{Influent Flow, Acre Inches / Day}{Pond Area, Acres}$
g. Organic Loading	O. L., lbs BOD_5 / Acre / Day = $\frac{BOD_5, mg/L \times Flow_{in}, MGD \times 8.34 lbs / mg/L / MG}{Pond Area, Acres}$
h. Population Loading	P.L., People / Acre / Day = $\frac{Population Served by System, People}{Pond Area, Acres}$

13. Trickling Filter

a. Total Flow (given flows)	Total Flow, MGD = Influent Flow, MGD + Recirculation Flow, MGD
b. Total Flow (given ratio)	Total Flow, MGD = Influent Flow, MGD x (1.0 + Recirculation Rate)
c. Hydraulic Loading	Hydraulic Loading, GPD / $ft^2 = \frac{Total\ Flow\ To\ Filter\ Area,\ ft^2}{Filter\ Area,\ ft^2}$
	Total flow always includes recirculated flow.
d. Organic Loading	$O L$, $lbs BOD_5$ / day / 1,000 $ft^3 = \frac{BOD_5 IN$, $mg/L \times Flow_{in}$, $MGD \times 8.34 \times 1,000}{Filter Volume, ft^3} Organic loading does not include recirculated flows$

14. Rotating Biological Contactors

a. Soluble BOD	SBOD, mg / L = Total BOD_5 , mg/L – ('K' Factor x Influent TSS mg/L)
	Total Media / Train, $ft^2 = \dot{a}$ ($Stage_1$, $ft^2 + Stage_2$, $ft^2 + + Stage_n$, ft^2)
b. Total Media	Total Media, $ft^2 = a$ (Media _{Train1} , $ft^2 + Media_{Train2}$, $ft^2 + + Media_{Trainn}$, ft^2)
c. Hydraulic Loading	Hydraulic Loading, GPD / $ft^2 = \frac{Influent\ Flow\ MGD\ x\ 1,000,000\ gal\ /\ MG}{Total\ Media\ Area,\ ft^2}$
	Total Media Area, ft ²
d. Soluble Organic Loading	SOL, lbs / 1,000 ft ² / Day = $\frac{SBOD_{in} \cdot mg/L \times Flow, MGD \times 8.34 \times 1,000}{Total Media Area, ft^2}$
e. Total Organic Loading	TOL , lbs / 1,000 ft ² / Day = $\frac{Total \; BOD_{in}}{Total \; Media \; Area, ft^2}$

15. Activated Sludge

10. Autivated Gladge	
a. Settled Sludge Volume	SSV , $mL/L = \frac{Settled\ Sludge\ Volume\ (SSV)$, $mL\ x\ 1,000\ mL/L}{Sample\ Volume}$, mL
b. Settled Sludge Volume	$\% SSV = \frac{Settled Sludge Volume (SSV), mL \times 100}{Sample Volume, mL}$
c. Return Rate (By SSV)	Return, MGD = $\frac{SSV_{30}}{1000 SSV_{30}} \times Flow_{in}$, MGD
d. Return Rate (By SVI)	$RASSS, mg/L = \frac{1,000,000}{SVI}$
	$\% Return = \frac{Flow_{in} \times MLSS, mg/L}{RASSS, mg/L MLSS, mg/L}$
e. Return Rate (Clarifier Mass Balance)	$\frac{[\mathit{MLSS}, \mathit{mg/L} \; x \; (\mathit{FLow}_{\mathit{in}}, \mathit{MGD} + \mathit{RASFlow}, \mathit{MGD})] + (\mathit{WASFlow}, \mathit{MGD} \; x \; \mathit{WASSS}, \mathit{mg/L})}{\mathit{RASSS}, \mathit{mg/L} + \mathit{MLSS}, \; \mathit{mg/L}}$

15. Activated Sludge (continued)

f. Clarifier Solids (Core Sample)	$Solids_C$, $Ibs = Core\ Sample\ TSS$, $mg/L\ x\ Volume_C\ MG\ x\ 8.34\ Ibs\ /\ mg/L\ /\ MG$
g. Clarifier Solids (MLSS)	$Solids_C = MLSS$, $mg/L \times Volume_C$, $MG \times 8.34$ lbs / mg/L / MG
h. Clarifier Solids (MLSS and RASSS)	$Solids_{C}, lbs = \left(\frac{MLSS, mg/L + RASSS, mg/L}{2}\right) \times Volume_{C}, MG \times 8.34 \ lbs \ / \ mg/L \ / \ MG$
	C = Clarifier or Settling Tank
	MLSS = Mixed Liquor Suspended Solids in milligrams / Liter
	RASSS = Return Activated Sludge Suspended Solids in milligrams / Liter
i. Sludge Volume Index	$SVI = \frac{Settled Sludge Volume, (SSV)_{30 \text{ minutes}} \times 1,000}{MLSS, mg/L}$
j. F:M Ratio	Aeration Influent COD or BOD ₅ , mg/L x Aeration Influent Flow, MGD x 8.34 MLVSS, mg/L x Aeration Volume, MG x 8.34
k. Desired MLVSS, (lbs)	MLVSS, Ibs = $\frac{Primary \ Effluent \ BOD_5 \ or \ COD, \ mg/L \ x \ Flow, \ MGD \ x \ 8.34}{Desired \ F:M \ Ratio}$
I. Desired MLVSS (mg/L)	$MLVSS$, $mg/L = \frac{Desired\ MLVSS\ , lbs}{(Aeration\ Volume\ , MG\ x\ 8.34)}$
m.Waste Volatile Solids (Based on F:M)	Waste, lbs = Actual MLVSS, lbs - Required MLVSS, lbs
n. Waste Rate, MGD	Waste Volatile Solids, lbs / day
(Based on F:M)	Waste, MGD = $\frac{1}{\text{(Waste Volatile Concentration, mg/L x 8.34)}}$
o. MCRT, Days	[MLSS, mg/L x (Aeration, MG + Settling, MG) x 8.34] (WASSS, mg/L x WAS, MGD x 8.34) + (TSS _{Out} , mg/L x Flow _{out} , MGD x 8.34)
p. Waste Solids, lbs/day (Based on MCRT)	\[\left[\frac{(MLSS, mg/L \ x \ (Aeration Vol., MG + Settling Vol., MG) \ x \ 8.34)}{Desired MCRT, days} \right] - (TSS_{out}, mg/L \ x \ Flow_{out}, MGD \ x \ 8.34)
q. Waste Rate, MGD (Based on MCRT)	Waste, MGD = $\frac{\text{Waste Solids, lbs / day}}{\text{Waste Activated Sludge Concentration, mg/L x 8.34}}$
r. Waste Rate, GPM	Waste Rate, $gpm = \frac{Waste Rate, MGD \times 1,000,000 \text{ gal } / MG}{1,440 \text{ minutes } / \text{ day}}$

16. Chemical Addition

a. Demand	Demand, mg/L = Dose, mg/L - Residual, mg/L
b. Dose, mg/L	Dose, $mg/L = \frac{Feed\ Rate,\ lbs\ /\ day}{Daily\ Flow,\ MGD\ x\ 8.34\ lbs\ /\ mg/L/\ MG}$
c. Required Chemical (Feed Rate, Ibs/day)	Required Chemical industrial, lbs / Day = $\frac{Dose, mg/L \times Daily Flow, MGD \times 8.34 lbs / mg/L / MG}{\% (decimal) Active Ingredient in Industrial Chemical}$

16. Chemical Addition (Continued)

d. Feed Rate, gpd	$Feed, gpd = \frac{Required Chemical_{Industrial}, Ibs/day}{Weight / Gallon of Chemical_{Industrial}, Ibs / gal}$
e. Feed Rate, gpm	Feed, gpm = Required Chemical Industrial , lbs / gal x 1,440 minutes / day Weight / Gallon of Chemical Industrial , lbs / gal x 1,440 minutes / day
f. Feed Rate, mL/minute	Feed, mL / minute = $\frac{Required \ Chemical_{industrial}}{Weight / Gallon \ of \ Chemical_{lndustrial}}, lbs / day \ x \ 3,785 \ mL / gal$
g. Supply Required	Required Supply, containers = Feed Rate, lbs / day x Days Supply Required, days Weight of Chemical in a Full Container, lbs / container
h. Supply on Hand	Supply on Hand, days = $\frac{\text{\# Full Containers } x \text{ Weight of Chemical in a Full Container, lbs / container}}{\text{Chemical Feed Rate, lbs / day}}$
i. Increases, (price, usage, or for safety)	Increase = Current Amount x [1.0 + % (decimal) Increase]
j. Chemical Cost	
k. Chemical Makeup (dry chemical)	Required, lbs = $\frac{\text{%Active Chemical}_{working} \times \text{Volume, gallons } \times 8.34 \text{ lbs } / \text{ gallon}}{\text{%Active Chemical}_{supply}}$
I. Chemical Makeup (solution)	Volume _{Makeup} = Concentration _{Working} × Volume _{Working} Concentration _{Makeup}
m.Active Ingredient	Chemical Used Active Ingredient = Chemical Used, lbs x % Active Ingredient

17. Solids Pumping

a. Estimated Pump Rate (gallons/minute)	Rate, $gpm = \frac{(TSS_{in} - TSS_{out}) \times Flow, MGD}{\% Solids \times Pump Time, minutes / day}$
b. Gallon pumped GPD	GPD = Pump Rate, gpm x Cycles, Cycles / day x Cycle Time, minutes / cycle
c. Solids Pumped lbs/day	Solids, lbs / day = Solids Volume, gpd x 8.34 lbs / gal ~ % (decimal) Solids
d. Volatile Solids Pumped, Ibs/day	Volatile Solids, lbs / day = Solids Volume, gpd x 8.34 lbs / gal x % Solids x % Volatile Matter All % values must be in decimal form.

18. Thickening

a. Solids Loading Rate	SLR, lbs / day / $ft^2 = \frac{TSS_{in}$, mg / L x Flow in , MGD x 8.34 lbs / gallon
(SLR) lbs/day/ft²	Thickener Area, ft^2
b. Solids Loading Rate (SLR) lbs/hour/ft ²	Solids Loading, lbs / hr / $ft^2 = \frac{\text{Solids Applied, lbs / hour}}{\text{Thickener Area, } ft^2}$

18. Thickening (continued)

c. Solids Volume Ratio (SVR)	$SVR = \frac{Solids \ Blanket \ Volume, \ gallons}{Thickener \ Influent \ Flow, \ gallons \ / \ day}$
d. Hydraulic Loading	Hydraulic Loading, gpd $/ ft^2 = \frac{Total\ Thickener\ Influent\ Flow,\ gpd}{Thickener\ Area,\ ft^2}$
e. Air : Solids Ratio	Air : Solids Ratio = $\frac{\text{Air Flow Rate, } ft^3 / \text{minute } \times 0.075 \text{lbs } / ft^3}{\text{Sludge Flow, } \text{gpm } \times \% \text{ Solids } \times 8.34 \text{ lbs } / \text{gallon}}$
f. Concentration Factor	Concentrat ion Factor = $\frac{\% \text{ Solids Thickener Sludge }_{\text{out}}}{\% \text{ Solids Thickener Sludge }_{\text{in}}}$

19. Aerobic Digestion

a. Volatile Solids Loading lbs/day/ft ³	Volatile Solids Loading, lbs /day / ft ³ = $\frac{\text{Volatile Solids Added, lbs / day}}{\text{Digester Volume, ft}^3}$
b. Digestion Time (based on flow)	Digestion Time, days = $\frac{Digester\ Volume,\ gallons}{Influent\ Flow,\ gpd}$
c. Digestion Time (based on solids)	Digestion Time, days = $\frac{Digester\ Solids,\ pounds}{Influent\ Solids,\ Ibs\ /\ day}$
d. Chemical Requirement	Chemical Re q' d = $\frac{Chemical\ Used\ _{lab}\ , mg\ x\ Digester\ Volume,\ MG\ x\ 8.34\ lbs\ /\ mg\ /\ L\ /MG}{Sludge\ Volume\ _{lab}\ ,\ Liters}$
e. Volatile Matter Reduction	% V. M. Reduction = $\frac{(\% V.M{in} - \% V.M{out}) \times 100}{[\% V.M{in} - (\% V.M{in} \times \% V.M{out})]}$

20. Anaerobic Digestion

a. Seed Volume	Seed, gallons = Digester Volume, gallons x Desired % Seed Volume
b. Volatile Solids Loading	Volatile Solids Loading, lbs /day / $_{ft}$ $^3 = \frac{\text{Volatile Solids Added, lbs / day}}{\text{Digester Volume, }_{ft}$ 3
c. Volatile Acids/ Alkalinity Ratio	V. A. : Alkalini ty Ratio = $\frac{Volatile\ Acids,\ mg\ /\ L}{Alkalinity\ ,mg\ /\ L}$
d. Chemical Requirement	Chemical Re q' d = $\frac{\text{Chemical Used}_{lab}, \text{mg x Digester Volume, MG x 8.34 lbs / mg / L /MG}}{\text{Sludge Volume}_{lab}, \text{Liters}}$
e. Volatile Matter Reduction	% V. M. Reduction = $\frac{(\% \text{ V.M }_{.in} - \% \text{ V.M }_{.out}) \times 100}{[\% \text{ V.M }_{.in} - (\% \text{ V.M }_{.in} \times \% \text{ V.M }_{.out})]}$
f. Gas Production ft ³ /Day	Gas, ft^3 = Volatile Solids in, lbs / day x % V. M. Reduction x Rate, ft^3 / lb V.M. Destroyed

1. Biosolids Disposal

a. Solids Production (dry tons/year)	Solids, dt / year = Solids Produced, lbs / MG x Average Daily Flow, MGD x 365 days / year 2,000 pounds / ton
b. Solids Production (wet tons/year)	Solids, wt / year = $\frac{\text{Solids Produced, lbs / MG x Average Daily Flow, MGD x 365 days / year}}{\% \text{ (decimal) Solids x 2,000 pounds / ton}}$
c. Plant Available Nitrogen (PAN)	[(Organic - N, $mg/kg \times f_1$) + (Ammonia - N, $mg/kg \times V_1$)] x 0.002
(lbs/dry ton)	f ₁ = Mineralization Rate (assume 0.20)
(IDS/GIY toll)	V ₁ =Volatilization Rate
	Injected Sludge = 1.0
	Incorporated Within 24 hrs = 0.85
	Incorporated within 7 days = 0.70
d. Application Rate (nitrogen basis)	Applicatio n Rate, Dry Tons / Acre = $\frac{Plant\ Required\ Nitrogen,\ lbs\ /\ acre}{Plant\ Available\ Nitrogen,\ lbs\ /\ dry\ ton}$
e. Metals Loading lbs/acre	Loading, lbs / Acre = Concentration, $mg / kg \times Application Rate, D.T. / acre \times 0.002 mg / kg / dry ton$
f. Allowable Applications (Metals Basis)	Maximum Ap plications = $\frac{\text{Maximum Al lowable Metals Loading, lbs / acre}}{\text{Metal Loading / Applicati on, lbs / acre / applicatio n}}$
g. Site Life (metal basis)	Site Life = $\frac{Allowable Applicati ons}{Frequency, applicatio ns \ / \ year}$

22. Pumping

a. Head to Pressure	Pressure , psi = Head, ft ^ 0.433 psi / ft
b. Pressure to Head	Head, ft = Pressure, psi ´ 2.31 ft / psi
c. Work	Work, ft - lbs = Weight, lbs ´ Height, ft
d. Power	Power, ft - lbs/minute = $\frac{\text{Work, ft - lbs}}{\text{Time, minutes}}$
e. Static Head, ft	Static Head, ft = Discharg e Tank Elevation, ft - Supply Tank Elevation, ft
f. Total Dynamic Head	TDH, ft. = Static Head, ft. + Friction Head, ft. + Velocity Head, ft. TDH = Total Dynamic Head
g. Horsepower	Horsepower = Power, ft - Ibs/min 33,000 ft - Ibs/minute/HP
h. Water Horsepower	Water Horsepower , whp = $\frac{Pump\ Rate,\ gpm\ x\ Total\ Head,\ ft\ x\ 8.34\ lbs\ /\ gal.}{33,000\ ft\ lbs\ /\ minute\ /\ hp}$
i. Brake Horsepower	Brake Horsepower , bhp = $\frac{Water\ Horsepower\ , HP}{\%\ Efficiency\ pump}$
j. Motor Horsepower	Motor Horsepower , $mhp = \frac{Brake\ Horsepower\ , HP}{\%\ Efficiency\ motor}$

k. Centrifugal Pump Affinity Law

Capacity	$Flow_2, cfs = \frac{Pump Speed_2}{Pump Speed_1} \cdot Flow_1, cfs$
Head	$Head_2 = \begin{cases} \frac{xPump Speed_2}{xPump Speed_1} & \text{Head}_1 \\ \frac{x}{yPump Speed_1} & \text{Head}_1 \end{cases}$
Brake Horsepower	$Bhp_2 = \begin{cases} \frac{xPump Speed_2}{v} & \frac{v}{u} \\ \frac{v}{u} & \frac{v}{u} \end{cases} $ Bhp ₁

23. Electrical Energy

a. Hp to kilowatts (kW)	Kilowatts = Horsepower x 0.746 Kw / hp
b. kW to kilowatt hrs	Kilowatt Hour = Kilowatts Used x Hours Operated
c. Power Cost	Cost = Kilowatt hours used x Cost / Kilowatt

24. Sampling

a. Composite Sample Volume, mL	Sample Volume $_{T} = \frac{Plant \ Flow_{T}, \ MGD \ x \ Total \ Sample \ Required, mL}{\# \ Samples \ To \ Be \ Collected \ x \ Average \ Daily \ Flow, MGD}$ $T = Sample \ Collection \ Time$
b. Proportioning Factor (PF)	Proportion ing Factor = $\frac{\text{Total Sample Required, mL}}{\text{\# of Samples Collected x Average Daily Flow, MGD}}$
c. Sample Volume (Using PF)	Sample Volume , $mL = Flow_T \times PF$ T = Time sample is collected.

25. Alkalinity

a. Conventional	Alkalinity as CaCO $_3$, mg/L = $\frac{A \times N \times 50,000}{Sample Volume, mL}$
	A = Volume of Standard Acid Used N = Normality of Standard Acid
b. Low Level	Alkalinity asCaCO $_3$, mg/L = $\frac{(2B - C) \times N \times 50,000}{Sample Volume, mL}$
	B = Volume of Standard Acid Used to reach pH 4.3 - 4.5 C = Total volume of Standard Acid for titration N = Normality of Standard Acid

26. Hardness

a. EDTA Standardization	EDTA, CaCO ₃ Equivalence (B) = $\frac{\text{Volume of CaCO}_3 \text{ Solution Titrated, mL}}{\text{EDTA Titrant Used, mL}}$
b. Hardness, mg/L Calcium Carbonate	Hardness (EDTA) as $CaCO_3 = \frac{A \times B \times 1,000}{Sample Volume, mL}$
	A = EDTA Used in Titration, mL
	B = EDTA CaCO ₃ Equivalence, mL/mL

27. Ammonia Nitrogen

27. Allillollia Nillogeli	
	NH 3 N, mg / L = $\frac{A}{\text{Sample Volume, mL}} \times \frac{B}{C}$
a. Nesslerization	A = Micrograms of N from calibratio n curve
	B = Volume of distillate collected
	C = Volume of distillate used for nessleriza tion
	Sample Volume = Original sample volume placed in distillati on flask
b. Titration	NH ₃ - N, mg / L = $\frac{(A - B) \times 280}{\text{Sample Volume, mL}}$
	A = Volume of titrant used for sample B = Volume of titrant used for blank
	Sample Volume = Volume of sample used for titration

28. Biochemical Oxygen Demand

a. Unseeded Samples	BOD_5 , $mg/L = \frac{(D.O{Start}, mg/L - D.O{Final}, mg/L) \times 300 mL}{Sample Volume, mL}$
b. Seed Correction Factor	Seed Correction , mg / L = $\frac{BOD_{seed}}{300 \text{ mL}}$ x mL Seed in the Sample Dilution
c. Seeded Samples	BOD_5 , $mg/L = \frac{[(D. O{Start}, mg/L - D. O{Final}, mg/L) - Seed Correction] \times 300 mL}{Sample Volume, mL}$

29. Chemical Oxygen Demand

a. FAS Standardization (Open Reflux)	FAS, Molarity = $\frac{\text{Volume of } 0.0417M \text{K}_2\text{Cr}_2\text{O}_7, \text{mL x } 0.25}{\text{FAS Titrant Added, mL}}$
b. FAS Standardization (Closed Reflux)	FAS, Molarity = $\frac{\text{Volume 0.0167 M K}_2\text{Cr}_2\text{O}_7, \text{mL x 0.10}}{\text{FAS Titrant Added, mL}}$
c. COD	COD as mg $O_2/L = \frac{(A-B) \times C \times 8000}{Sample Volume, mL}$
	A = FAS Used For Blank, mL B = FAS Used For Sample, mL C = FAS Molarity

30. Total Residual Chlorine

a. Iodometric Direct Titration	$TRC, mg/L = \frac{(Titrant, mL - Blank, mL) \times Titrant Normality, N \times 35,450}{Sample, mL}$
b. lodometric Back Titration (No lodine correction)	TRC, $mg/L = \frac{PAO \ Added, \ mL \ (5 \ x \ Iodine \ Used, \ mL \) \times 200}{Sample \ Volume, \ mL}$
c. Iodine Correction	$Iodine Correction Factor = \frac{Iodine Normality_{actual}}{0.0282 N}$
d. lodometric Back Titration (With lodine correction)	TRC, $mg/L = \frac{PAO \ Added, \ mL \ (5 \ x \ lodine \ Used, \ mL \ x \ CF) \ x \ 200}{Sample \ Volume, \ mL}$
e. Iodometric Back Titration Iodate Titrant	TRC, mg / L = $\frac{\text{(Iodate Used}_{blank} - Iodate Used}_{sample}) \times 200}{\text{Sample Volume, mL}}$

31. Dissolved Oxygen

a. Winkler Titration	D. O., $mg / L = \frac{Titrant, mL \times Normality \times 8,000}{Equivalent Sample Volume, mL}$
	If $N = 0.0250$ & Sample Volume = 200 mL then : Titrant Used = D.O. , mg / L

32. Fecal Coliform

a. Multiple Tube	$MPN / 100 \text{ mL} = MPN_{chart} \times \frac{\text{Sample Volume In First Dilution}_{chart}}{\text{Sample Volume in First Dilution}_{sample}}$
b. Membrane Filtration	Colonies / 100 mL = $\frac{Colonies\ Counted}{Sample\ Volume\ , mL} \times 100 \text{ mL}$

33. Nitrate Nitrogen

a. Brucine Sulfate	NO_3 - N , mg / $L = \frac{NO_3 - N Concentrat ion, micrograms}{Sample Volume In Reaction Tube, mL}$
b. Cadmium Reduction	NO_3 - N , mg / L = $Nitrate$ / $Nitrite$, mg / L - $Nitrite$, mg / L

34. Nitrite Nitrogen

a. Diazotization	$NO_2 - N = C \times \frac{V}{S}$
Diluted sample	$C = NO_2 - N$ Concentrat ion, mg / L V = Total volume after dilution, mL S = Sample volume in dilution, mL

35. Phosphorus

a. Phosphorus	Phosphorus, mg P / L = $\frac{\text{Phosphorus From Standard Curve, mg x 1,000}}{\text{Sounds Volume and }}$
	Sample Volume, mL

36. Total Suspended Solids

a. TSS, mg/L	Total Suspended Solids, $mg/L = \frac{(A-B) \times 1,000 \text{ mg/gram } \times 1,000 \text{ mL/L}}{\text{Sample Volume, milliliter s}}$
	A = Weight of Dried Solids, Filter & planchet or dish in grams $B = Tare$ Weight (Dried Filter & planchet or dish) in grams

37. Total Kjeldahl Nitrogen

Nitrogen	
	TKN - N, mg / L = $\frac{A}{\text{Sample Volume, mL}} \times \frac{B}{C}$
a. Nesslerization	A = Micrograms of N from calibratio n curve B = Volume of distillate collected C = Volume of distillate used for nessleriza tion Sample Volume = Original sample volume placed in distillati on flask
b. Titration	TKN - N, mg / L = $\frac{(A-B) \times 280}{\text{Sample Volume, mL}}$
	A = Volume of titrant used for sample B = Volume of titrant used for blank Sample Volume = Volume of sample used for titration

38. Total Volatile Suspended Solids

	•	
a. TVSS, mg/L	Volatile Solids, mg / L = $\frac{(A - C) \times 1,000 \text{ mg / gram } \times 1,000 \text{ mL / L}}{\text{Sample Volume, milliliters}}$	
	A=Weight of Dried Solids & Support C=Weight of Ash & Support	

39. Residual (Sludge) Solids Tests

a. % Solids	% Solids = $\frac{Dry \text{ Solids }, \text{ grams}}{Residual \text{ (Solids & Water), grams}} \times 100$	
b. % Volatile Matter	% Volatile Matter = (Dry Solids , grams - Ash , grams) Dry Solids , grams	
c. % Moisture	% Moisture= Residual (Solids & Water), grams - Dry Solids, grams) x 100 Residual (Solids & Water), grams or	
	% Moisture = 100 - % Solids	

40. VPDES Reporting

h. Average Annual

Concentration

40. VPDES Reporting	
a. Average Monthly Concentration	AMC, mg / L = $\frac{\dot{a}(Test 1 + Test 2 + Test 3 + + Test n)}{N(Tests during month)}$
b. Average Weekly Concentration	AWC, mg / L = $\frac{\dot{a}(Test\ 1 + Test\ 2 + Test\ 3 + + Test\ n)}{N(tests\ during\ calendar\ week)}$
c. Average Daily Concentration	ADC, mg / L = $\frac{\dot{a}(Test\ 1 + Test\ 2 + Test\ 3 + + Test\ n)}{N(Tests\ during\ day)}$
d. Average Hourly Concentration	AHC, mg / L = $\frac{\dot{a}(Test_1 + Test_2 + Test_3 + + Test_n)}{N(tests_1 + Test_2 + Test_3 + + Test_n)}$
e. Daily Quantity	DailyQuantity, KG / Day = Conc., $mg / L x Flow$, MGD $x 3.785 lbs/MG/mg/L$
	Conc. = Individual Test Result in mg / L $Flow = Flow \ on \ day \ sample \ was \ collected \ in \ MGD.$
f. Average Monthly Quantity	AMQ, KG / day = $\frac{\dot{a}(DQ_1 + DQ_2 + DQ_3 + + DQ_n)}{N(Tests during month)}$
g. Average Weekly *Quantity	AWQ, KG / day = $\frac{\dot{a}(DQ_1 + DQ_2 + DQ_3 + + DQ_n)}{N \text{ (tests during calendar week)}}$
h. Geometric Mean (Xy)	Geometric Mean = $\sqrt[n]{Test_1 \times Test_2 \times Test_3 \times \times Test_n}$
i. Geometric Mean (log)	Geometric Mean = Antilog $\hat{e} \frac{(\log X_1 + \log X_2 + \log X_3 + + \log X_n)\hat{u}}{N, Number of Tests}$
41. Nutrient General Permit Reporting	
a. Daily Loading, lbs/day	Daily Loading, lbs / day = Concentration, mg / L ´ Flow, MGD ´ 8.3438
b. Average Monthly Load	Average Monthly Load = $\frac{\dot{a}}{\text{Number of Days samples were collected}}$
c. Monthly Load	Monthly Load = Average Monthly Load Number of Days in Month
d. Annual Load, Year to Date	Annual Load, Year to Date = A MonthlyLoad _{January} + + Monthly Load _{current month}
e. Annual Load	Annual Load, lbs = a Monthly Load _{Jan} + + Monthly Load _{Dec}
f. Monthly Concentration	Monthly Concentration = $\frac{\dot{a}}{\text{Number of days samples were collected}}$
g. Average Annual Concentration Year to Date	Annual Concentration, YTD = Average Conc. January + + Average Conc. Current Month Number of Months

Annual Concentration =

 \dot{a} Average Conc._January + ... + Average Conc._December

12

42. Conversion Factor Table

To Change From:	То:	Multiply by:
Feet (ft)	Inches (in)	12
Yards (yd)	Feet (ft)	3
Yards (yd)	Inches (in)	36
Miles (mi)	Yards (yd)	1,760
Miles (mi)	Feet (ft)	5,280
Cubic Feet (ft 3)	Gallons (gal)	7.48
Cubic Feet (ft ³)	Pounds-Wastewater (lbs)	62.4
Cubic Feet (ft 3)	Pounds-Air (lbs)	0.075
Gallons (gal)	Pounds (lbs)	8.34
Gallons (gal)	Liters (L)	3.785
Gallons	Kilograms	3.785
Million Gallons/Day (MGD)	Gallons/Day (gpd)	1,000,000
Million Gallons/Day (MGD)	Gallons/Minute (gpm)	694
Million Gallons/Day (MGD)	Cubic Feet/Second (cfs)	1.55
Million Gallons/Day (MGD)	Acre-feet/day	3.069
Liters/Second (L/s)	Gallons/Minute (gpm)	15.85
Million Gallons/Day (MGD)	Liters/second	43.8
Gallons/day	Cubic Meters/Day	0.003785
Acres (Ac)	Square Feet (ft 2)	43,560
Acre Feet (Ac-ft)	Gallons (gal)	325,829
Acre Inches (Ac-in)	Gallons (gal)	27,152
Liters (L)	Milliliters (mL)	1,000
Kilograms (Kg)	Pounds (lbs)	2.2
Meters (m)	Feet (ft)	3.3
Cubic Meters (m 3)	Gallons (gal)	269
Pounds (lbs)	Grams (g)	454
Ton (t)	Pounds (lbs)	2,000